MovieOcean: Assessment of a Personality-based Recommender System


Abstract:

This research effort explores the incorporation of personality treats into user-user collaborative filtering algorithms. To explore the performance of such a method, MovieOcean, a movie recommender system that uses a questionnaire based on the Big Five model to generate personality profiles, was implemented. These personality profiles are used to precompute personality-based neighborhoods, which are then used to predict movie ratings and generate recommendations. In an offline analysis, the root mean square error metric is computed to analyze the accuracy of the predicted ratings and the F1-score to assess the relevance of the recommendations for the personality-based and a standard-rating-based approach. The obtained results showed that the root mean square error of the personality-based recommender system improves when the personality has a higher weight than the information about the user ratings. A subsequent t-test was conducted for the proposed personality-based approach underperformed based on the root mean square error metric. Furthermore, interviews with users suggested that including aspects of personality when computing recommendations is well-perceived and can indeed help improve current recommendation methods.

Año de publicación:

2022

Keywords:

  • Big Five Model
  • Personalized Recommendations
  • recommender systems
  • Personality-based Recommenders

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso abierto

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación
  • Ciencias de la computación

Áreas temáticas de Dewey:

  • Métodos informáticos especiales
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 12: Producción y consumo responsables
  • ODS 8: Trabajo decente y crecimiento económico
Procesado con IAProcesado con IA