Multi Mq-monogenic Function in Different Dimension


Abstract:

A metamonogenic of first-order function or simply metamonogenic function is a function that satisfies the differential equation where D is the Cauchy–Riemann operator and λ can be real or Cliffordvalued constant (see [4]). Using this definition we can say that a multimetamonogenic function u is separately metamonogenic in several variables $$ x^{(\mathit j)}, j=1,...{\mathit n} \;\rm {with} \; {\mathit n} \geq 2, \rm {if} \; {\mathit x}^{(\mathit j)}=({\mathit x}_{1}^{(\mathit j)},...,{\mathit x}_{{\mathit m}_{\mathit j}}^{(\mathit j)}) $$ runs in the Euclidean space where D j is the corresponding Cauchy–Riemann operator in the space Using the theory of algebras of Clifford type depending on parameters (see [11, 12]), the present proposal discusses the properties of u in case the dimensions mj are different from each other for multi Mq-monogenic …

Año de publicación:

2013

Keywords:

    Fuente:

    googlegoogle

    Tipo de documento:

    Other

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Optimización matemática
    • Optimización matemática

    Áreas temáticas:

    • Análisis

    Contribuidores: