Multi Mq-monogenic Function in Different Dimension
Abstract:
A metamonogenic of first-order function or simply metamonogenic function is a function that satisfies the differential equation where D is the Cauchy–Riemann operator and λ can be real or Cliffordvalued constant (see [4]). Using this definition we can say that a multimetamonogenic function u is separately metamonogenic in several variables $$ x^{(\mathit j)}, j=1,...{\mathit n} \;\rm {with} \; {\mathit n} \geq 2, \rm {if} \; {\mathit x}^{(\mathit j)}=({\mathit x}_{1}^{(\mathit j)},...,{\mathit x}_{{\mathit m}_{\mathit j}}^{(\mathit j)}) $$ runs in the Euclidean space where D j is the corresponding Cauchy–Riemann operator in the space Using the theory of algebras of Clifford type depending on parameters (see [11, 12]), the present proposal discusses the properties of u in case the dimensions mj are different from each other for multi Mq-monogenic …
Año de publicación:
2013
Keywords:
Fuente:

Tipo de documento:
Other
Estado:
Acceso abierto
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Análisis