Multi Mq-monogenic function in different dimension


Abstract:

A metamonogenic of first-order function or simply metamonogenic function is a function that satisfies the differential equation (D - λ)u = 0, where D is the Cauchy-Riemann operator and λ can be real or Cliffordvalued constant (see [4]). Using this definition we can say that a multimetamonogenic function u is separately metamonogenic in several variables x(j), j = 1, ⋯, n with n ≥ 2, if x(j) = (x(j)1, ⋯, x(j)mj) runs in the Euclidean space ℝmj and (Dj - λ)u = 0, for each j = 1, ⋯, n, where Dj is the corresponding Cauchy-Riemann operator in the space ℝmj. Using the theory of algebras of Clifford type depending on parameters (see [11, 12]), the present proposal discusses the properties of u in case the dimensions mj are different from each other for multi Mq-monogenic functions, following the ideas exhibited in [9, 10].

Año de publicación:

2014

Keywords:

  • Metamonogenic function
  • Clifford algebras
  • Clifford type depending on parameters
  • Multi-metamonogenic function
  • Monogenic function
  • Multi Mq-monogenic functions

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Modelo matemático
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Álgebra
  • Análisis
  • Geometría