Multi-label classification for recommender systems


Abstract:

Multi-label classification groups a set of supervised learning methods producing models capable of classifying examples in more than one class. These methods have been applied in diverse fields; however, the field of recommender systems has been hardly explored. In this work, books' recommendation data are used to evaluate the behavior of the main multi-label classification methods in this application domain. The experiments carried out demonstrated their suitability to provide reliable recommendations and to avoid the grey sheep problem. © Springer International Publishing Switzerland 2013.

Año de publicación:

2013

Keywords:

  • Multi-label classification
  • Web mining
  • recommender systems

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Funcionamiento de bibliotecas y archivos