Multi-label classification for recommender systems
Abstract:
Multi-label classification groups a set of supervised learning methods producing models capable of classifying examples in more than one class. These methods have been applied in diverse fields; however, the field of recommender systems has been hardly explored. In this work, books' recommendation data are used to evaluate the behavior of the main multi-label classification methods in this application domain. The experiments carried out demonstrated their suitability to provide reliable recommendations and to avoid the grey sheep problem. © Springer International Publishing Switzerland 2013.
Año de publicación:
2013
Keywords:
- Multi-label classification
- Web mining
- recommender systems
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
Áreas temáticas:
- Funcionamiento de bibliotecas y archivos