Multi-labeler classification using kernel representations and mixture of classifiers


Abstract:

This work introduces a multi-labeler kernel novel approach for data classification learning from multiple labelers. The learning process is done by training support-vector machine classifiers using the set of labelers (one labeler per classifier). The objective functions representing the boundary decision of each classifier are mixed by means of a linear combination. Followed from a variable relevance, the weighting factors are calculated regarding kernel matrices representing each labeler. To do so, a so-called supervised kernel function is also introduced, which is used to construct kernel matrices. Our multi-labeler method reaches very good results being a suitable alternative to conventional approaches.

Año de publicación:

2017

Keywords:

  • Supervised kernel
  • SUPPORT VECTOR MACHINES
  • Multi-labeler classification

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático

Áreas temáticas:

  • Ciencias de la computación