Multi-objective hierarchical genetic algorithm for modular neural network optimization using a granular approach


Abstract:

In this paper we propose a multi-objective hierarchical genetic algorithm (MOHGA) for modular neural network optimization. A granular approach is used due to the fact that the dataset is divided into granules or sub modules. The main objective of this method is to know the optimal number of sub modules or granules, but also allow the optimization of the number of hidden layers, number of neurons per hidden layer, error goal and learning algorithms per module. The proposed MOHGA is based on the Micro genetic algorithm and was tested for a pattern recognition application. Simulation results show that the proposed modular neural network approach offers advantages over existing neural network models.

Año de publicación:

2013

Keywords:

    Fuente:

    googlegoogle

    Tipo de documento:

    Other

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Aprendizaje automático
    • Algoritmo
    • Algoritmo

    Áreas temáticas:

    • Programación informática, programas, datos, seguridad