Multi-objective local search based on decomposition


Abstract:

It is generally believed that Local search (Ls) should be used as a basic tool in multi-objective evolutionary computation for combinatorial optimization. However, not much effort has been made to investigate how to efficiently use Ls in multi-objective evolutionary computation algorithms. In this paper, we study some issues in the use of cooperative scalarizing local search approaches for decomposition-based multiobjective combinatorial optimization. We propose and study multiple move strategies in the Moea/d framework. By extensive experiments on a new set of bi-objective traveling salesman problems with tunable correlated objectives, we analyze these policies with different Moea/d parameters. Our empirical study has shed some insights about the impact of the Ls move strategy on the anytime performance of the algorithm.

Año de publicación:

2016

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Algoritmo
    • Algoritmo

    Áreas temáticas de Dewey:

    • Programación informática, programas, datos, seguridad
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 17: Alianzas para lograr los objetivos
    • ODS 8: Trabajo decente y crecimiento económico
    Procesado con IAProcesado con IA