Multi-objective optimization with improved genetic algorithm
Abstract:
In this work, we extend an improved GA (GA-SRM) to multi-objective flowshop scheduling problem (FSP) in order to obtain better pareto-optimum solutions (POS). Two kinds of cooperative-competitive genetic operators in GA-SRM, CM and SRM, are extended to the ones suitable for FSP in which solutions (individuals) are represented as permutations. Simulation results verify that GA-SRM shows better performance for multi-objective optimization problem (MOP), and consequently better POS are obtained rather than conventional approaches with canonical GA.
Año de publicación:
2000
Keywords:
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Algoritmo
- Optimización matemática
Áreas temáticas:
- Programación informática, programas, datos, seguridad