Multi-objective optimization with improved genetic algorithm


Abstract:

In this work, we extend an improved GA (GA-SRM) to multi-objective flowshop scheduling problem (FSP) in order to obtain better pareto-optimum solutions (POS). Two kinds of cooperative-competitive genetic operators in GA-SRM, CM and SRM, are extended to the ones suitable for FSP in which solutions (individuals) are represented as permutations. Simulation results verify that GA-SRM shows better performance for multi-objective optimization problem (MOP), and consequently better POS are obtained rather than conventional approaches with canonical GA.

Año de publicación:

2000

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Optimización matemática
    • Algoritmo
    • Optimización matemática

    Áreas temáticas de Dewey:

    • Programación informática, programas, datos, seguridad
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 12: Producción y consumo responsables
    • ODS 8: Trabajo decente y crecimiento económico
    Procesado con IAProcesado con IA