Multi-table reinforcement learning for visual object recognition


Abstract:

This paper presents a bag of feature based method for visual object recognition. Our contribution is focussed on the selection of the best feature descriptor. It is implemented by using a novel multi-table reinforcement learning method that selects among five of classical descriptors (i.e., Spin, SIFT, SURF, C-SIFT and PHOW) the one that best describes each image. Experimental results and comparisons are provided showing the improvements achieved with the proposed approach. © 2013 Springer.

Año de publicación:

2013

Keywords:

  • Artificial Intelligence
  • Object recognition
  • reinforcement learning

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación
  • Ciencias de la computación

Áreas temáticas:

  • Ciencias de la computación