MultiStream: A Multiresolution Streamgraph Approach to Explore Hierarchical Time Series


Abstract:

Multiple time series are a set of multiple quantitative variables occurring at the same interval. They are present in many domains such as medicine, finance, and manufacturing for analytical purposes. In recent years, streamgraph visualization (evolved from ThemeRiver) has been widely used for representing temporal evolution patterns in multiple time series. However, streamgraph as well as ThemeRiver suffer from scalability problems when dealing with several time series. To solve this problem, multiple time series can be organized into a hierarchical structure where individual time series are grouped hierarchically according to their proximity. In this paper, we present a new streamgraph-based approach to convey the hierarchical structure of multiple time series to facilitate the exploration and comparisons of temporal evolution. Based on a focus+context technique, our method allows time series exploration at different granularities (e.g., from overview to details). To illustrate our approach, two usage examples are presented.

Año de publicación:

2018

Keywords:

  • Streamgraph
  • TIME SERIES
  • fisheye
  • focus+context
  • stacked graph
  • overview+detail
  • multiresolution visualization
  • aggregation

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Análisis de datos
  • Ciencias de la computación

Áreas temáticas de Dewey:

  • Métodos informáticos especiales
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 17: Alianzas para lograr los objetivos
  • ODS 8: Trabajo decente y crecimiento económico
Procesado con IAProcesado con IA