Multidimensional big spatial data modeling through a case study: LTE rf subsystem power consumption modeling
Abstract:
This paper presents a case study for comparing different multidimensional mathematical modeling methodologies used in multidimensional spatial big data modeling and proposing a new technique. An analysis of multidimensional modeling approaches (neural networks, polynomial interpolation and homotopy continuation) was conducted for finding an approach with the highest accuracy for obtaining reliable information about a cell phone consumed power and emitted radiation from streams of measurements of different physical quantities and the uncertainty ranges of these measure ments. The homotopy continuation numerical approach proved to have the highest accuracy (97%). This approach was validated against another device with a different RF subsystem design. The approach modelled the power consumption of the validation device with an accuracy of 98%.
Año de publicación:
2016
Keywords:
- Haskell
- Mathematical modeling
- interval analysis
- Big spatial data
- Homotopy continuation
Fuente:

Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Big data
- Telecomunicaciones
- Energía
Áreas temáticas:
- Ciencias de la computación