Multiobjective optimization of current waveforms for switched reluctance motors by genetic algorithm


Abstract:

In this article a genetic algorithm (GA) is employed to determine the desired current waveforms for switched reluctance motors (SRM) through generating appropriate reference phase torques for a given desired torque using torque-sharing function. The objective is to yield smoother phase current waveforms in general, and achieve minimum phase current variations in particular. This problem is formulated into a multiobjective optimization task with certain constraints. Due to the highly nonlinear relationship between the SRM torque and current, this optimization task is an NP-hard problem. To deal with the difficulty, the problem is further coded so that a GA can be applied to facilitate the search of global minimum. Simulation results verify the effectiveness of the proposed method.

Año de publicación:

2004

Keywords:

  • Multiobjective optimization
  • Genetic Algorithm
  • Torque-sharing function
  • Switched reluctance motors

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Matemáticas aplicadas

Áreas temáticas:

  • Métodos informáticos especiales