Multiscale polynomial autoregressive model for monthly sardines catches forecasting
Abstract:
The aim of this paper is to find a model to forecast 1-month ahead monthly sardines catches using a multivariate polynomial model combined with multi-scale stationary wavelet decomposition. The observed monthly sardines catches are decomposed into various sub-series employing wavelet decomposition and then appropriate sub-series are used as inputs to the autoregressive forecasting model. The forecasting strategy parameters are estimated using the least squares method and we find that the proposed forecaster achieves 99% of the explained variance with a MAPE below 7.6%. © 2009 IEEE.
Año de publicación:
2009
Keywords:
- regression
- forecasting
- Wavelet Analysis
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Pronóstico
- Estadísticas
Áreas temáticas:
- Probabilidades y matemática aplicada