Multiscale polynomial autoregressive model for monthly sardines catches forecasting


Abstract:

The aim of this paper is to find a model to forecast 1-month ahead monthly sardines catches using a multivariate polynomial model combined with multi-scale stationary wavelet decomposition. The observed monthly sardines catches are decomposed into various sub-series employing wavelet decomposition and then appropriate sub-series are used as inputs to the autoregressive forecasting model. The forecasting strategy parameters are estimated using the least squares method and we find that the proposed forecaster achieves 99% of the explained variance with a MAPE below 7.6%. © 2009 IEEE.

Año de publicación:

2009

Keywords:

  • regression
  • forecasting
  • Wavelet Analysis

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Pronóstico
  • Estadísticas

Áreas temáticas:

  • Probabilidades y matemática aplicada