Multivariate subexponential distributions and random sums of random vectors
Abstract:
Let F(x) denote a distribution function in ℝd and let F*n(x) denote the nth convolution power of F(x). In this paper we discuss the asymptotic behaviour of 1 - F* n(x) as x tends to ∞ in a certain prescribed way. It turns out that in many cases 1 - F*n(x) ∼ n(1 - F(x)). To obtain results of this type, we introduce and use a form of subexponential behaviour, thereby extending the notion of multivariate regular variation. We also discuss subordination, in which situation the index n is replaced by a random index N. © Applied Probability Trust 2006.
Año de publicación:
2006
Keywords:
- Subexponential distribution
- Random sum
- Regular variation
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Probabilidad
- Probabilidad
Áreas temáticas:
- Probabilidades y matemática aplicada
- Principios generales de matemáticas