A Modeled Approach for Online Adversarial Test of Operational Vehicle Safety


Abstract:

The scenario-based testing of operational vehicle safety presents a set of principal other vehicle (POV) trajectories that seek to force the subject vehicle (SV) into a certain safety-critical situation. Current scenarios are mostly (i) statistics-driven: inspired by human driver crash data, (ii) deterministic: POV trajectories are pre-determined and are independent of SV responses, and (iii) overly simplified: defined over a finite set of actions performed at the abstracted motion planning level. Such scenario-based testing (i) lacks severity guarantees, (ii) has predefined maneuvers making it easy for an SV with intelligent driving policies to game the test, and (iii) is inefficient in producing safety-critical instances with limited and expensive testing effort. We propose a model-driven online feedback control policy for multiple POVs which propagates efficient adversarial trajectories while respecting traffic rules and other concerns formulated as an admissible state-action space. The approach is formulated in an anchor-template hierarchy structure, with the template model planning inducing a theoretical SV capturing guarantee under standard assumptions. The planned adversarial trajectory is then tracked by a lower-level controller applied to the full-system or the anchor model. The effectiveness of the methodology is illustrated through various simulated examples with the SV controlled by either parameterized self-driving policies or human drivers.

Año de publicación:

2021

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

      Áreas temáticas:

      • Otras ramas de la ingeniería