Near InfraRed Imagery Colorization
Abstract:
This paper proposes a stacked conditional Generative Adversarial Network-based method for Near InfraRed (NIR) imagery colorization. We propose a variant architecture of Generative Adversarial Network (GAN) that uses multiple loss functions over a conditional probabilistic generative model. We show that this new architecture/loss-function yields better generalization and representation of the generated colored IR images. The proposed approach is evaluated on a large test dataset and compared to recent state of the art methods using standard metrics.11Approved for public release; unlimited distribution.
Año de publicación:
2018
Keywords:
- Infrared Imagery colorization
- Generative Adversarial Network (GAN)
- Convolutional Neural Networks (CNN)
Fuente:
scopus
google
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Visión por computadora
- Ciencias de la computación
Áreas temáticas:
- Técnicas, equipos y materiales
- Métodos informáticos especiales