Network security using growing hierarchical self-organizing maps


Abstract:

This paper presents a hierarchical self-organizing neural network for intrusion detection. The proposed neural model consists of a hierarchical architecture composed of independent growing self-organizing maps (SOMs). The SOMs have shown to be successful for the analysis of high-dimensional input data as in data mining applications such as network security. An intrusion detection system (IDS) monitors the IP packets flowing over the network to capture intrusions or anomalies. One of the techniques used for anomaly detection is building statistical models using metrics derived from observation of the user's actions. The proposed growing hierarchical SOM (GHSOM) address the limitations of the SOM related to their static architecture. Experimental results are provided by applying the well-known KDD Cup 1999 benchmark data set, which contains a great variety of simulated networks attacks. Randomly selected subsets that contain both attacks and normal records from this benchmark are used for training the GHSOM. Before training, a transformation for qualitative features present in the benchmark data set is proposed in order to compute distance among qualitative values. Comparative results with other related works are also provided. © Springer-Verlag 2009.

Año de publicación:

2009

Keywords:

  • Network security
  • Self-Organization
  • Intrusion detection system

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación
  • Ciencias de la computación

Áreas temáticas:

  • Ciencias de la computación
  • Derecho privado
  • Instrumentos de precisión y otros dispositivos