Network topology and collapse of collective stable chaos
Abstract:
Collective stable chaos consists of the persistence of disordered patterns in dynamical spatiotemporal systems possessing a negative maximum Lyapunov exponent. We analyze the role of the topology of connectivity on the emergence and collapse of collective stable chaos in systems of coupled maps defined on a small-world networks. As local dynamics we employ a map that exhibits a period-three superstable orbit. The network is characterized by a rewiring probability p. We find that collective chaos is inhibited on some ranges of values of the probability p; instead, in these regions the system reaches a synchronized state equal to the period-three orbit of the local dynamics. Our results show that the presence of long-range interactions can induce the collapse of collective stable chaos in spatiotemporal systems. © 2011-12 by IJAMAS, CESER Publications.
Año de publicación:
2012
Keywords:
- Small-world networks
- random networks
- Spatiotemporal chaos
- Collective behavior
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Sistema no lineal
Áreas temáticas:
- Ciencias de la computación
- Ciencias sociales
- Ciencias Naturales y Matemáticas