Network topology and collapse of collective stable chaos


Abstract:

Collective stable chaos consists of the persistence of disordered patterns in dynamical spatiotemporal systems possessing a negative maximum Lyapunov exponent. We analyze the role of the topology of connectivity on the emergence and collapse of collective stable chaos in systems of coupled maps defined on a small-world networks. As local dynamics we employ a map that exhibits a period-three superstable orbit. The network is characterized by a rewiring probability p. We find that collective chaos is inhibited on some ranges of values of the probability p; instead, in these regions the system reaches a synchronized state equal to the period-three orbit of the local dynamics. Our results show that the presence of long-range interactions can induce the collapse of collective stable chaos in spatiotemporal systems. © 2011-12 by IJAMAS, CESER Publications.

Año de publicación:

2012

Keywords:

  • Small-world networks
  • random networks
  • Spatiotemporal chaos
  • Collective behavior

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Sistema no lineal

Áreas temáticas:

  • Ciencias de la computación
  • Ciencias sociales
  • Ciencias Naturales y Matemáticas