Neural networks in virtual reference tuning
Abstract:
This paper discusses the application of the virtual reference tuning (VRT) techniques to tune neural controllers from batch inputoutput data, by particularising nonlinear VRT and suitably computing gradients backpropagating in time. The flexibility of gradient computation with neural networks also allows alternative block diagrams with extra inputs to be considered. The neural approach to VRT in a closed-loop setup is compared to the linear VRFT one in a simulated crane example. © 2011 Elsevier Ltd. All rights reserved.
Año de publicación:
2011
Keywords:
- Model reference control
- Direct controller design
- Virtual reference feedback tuning
- Back propagation through time
- Neural networks
- Data-based controller tuning
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Inteligencia artificial
- Ciencias de la computación
Áreas temáticas:
- Funcionamiento de bibliotecas y archivos