New Measures for Shaping Trajectories in Dynamic Optimization


Abstract:

We propose a new class of measures for shaping time-dependent trajectories in dynamic optimization (DO). The proposed measures are analogous to risk measures used in stochastic optimization (SO) and are inspired by a recently-proposed unifying abstraction for infinite-dimensional optimization. Risk measures are summarizing statistics (e.g., average, variance, quantiles, worst-case values) that are used to shape the probability density of random objectives and constraints. We show that this extensive collection of measures can be applied in DO for computing and manipulating interesting features of time-dependent trajectories (e.g., excursion costs and quantiles). We also discuss how to implement these measures in the Julia modeling package InfiniteOpt.jl.

Año de publicación:

2022

Keywords:

  • Trajectories
  • measures
  • Infinite-dimensional optimization
  • Dynamic optimization

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso abierto

Áreas de conocimiento:

  • Control óptimo
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Programación informática, programas, datos, seguridad
  • Métodos informáticos especiales
  • Ciencias de la computación