New decompositions for the classes of quasi-Fredholm and semi B-Weyl operators


Abstract:

In this paper, we show that if T ϵL(X) is a quasi-Fredholm operator of degree d such that N(Td)+R(T) is complemented, then T has a decomposition like the Kato type operators. Using this decomposition allows us get a result about the stability of this class of operators under perturbations by nilpotent operators. Also we give a new decomposition for the class of semi B-Weyl operators, and through this property we shown that T is a semi B-Weyl operator if and only if T=S+K where S is a semi B-Browder operator and K is finite-dimensional.

Año de publicación:

2020

Keywords:

  • nilpotent operator
  • Perturbation
  • Quasi-Fredholm operator
  • decomposition

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática

Áreas temáticas:

  • Matemáticas