Noise removal of the x-ray medical image using fast spatial filters and GPU
Abstract:
Medical images are corrupted by different types of noises caused by the equipment itself. It is very important to obtain precise images to facilitate accurate observations for the given application. Removing of noise from images is now a very challenging issue in the field of medical image processing. This work undertake the study of noise removal techniques in medical image by using fast implementation of different digital filters, such as average, median and Gaussian filter. Processing of X-ray medical images takes a significant time. Now days modern hardware allows to use parallel technology for image processing on CPU and GPU. Using GPU processing technology were proposed parallel implementations of noise reduction algorithm taking into account the data parallelism. The experimental study conducted on medical X-ray image, so that to choose the best filters considering medical task and time of processing. The comparison of the implementation of fast filters algorithm and GPU implementation show great increase in performance. Graphics processing units (GPUs) are used today in a wide range of applications, mainly because they can dramatically accelerate parallel computing. In the field of medical imaging, GPUs are in some cases crucial for enabling practical use of computationally demanding algorithms.
Año de publicación:
2018
Keywords:
- Gaussian fast filter
- GPU
- Parallel programming
- average fast filter
- medical image
- median fast filter
Fuente:
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Ciencias de la computación
- Laboratorio médico
Áreas temáticas:
- Física aplicada