Non-homogeneous Haze Removal Through a Multiple Attention Module Architecture
Abstract:
This paper presents a novel attention based architecture to remove non-homogeneous haze. The proposed model is focused on obtaining the most representative characteristics of the image, at each learning cycle, by means of adaptive attention modules coupled with a residual learning convolutional network. The latter is based on the Res2Net model. The proposed architecture is trained with just a few set of images. Its performance is evaluated on a public benchmark—images from the non-homogeneous haze NTIRE 2021 challenge—and compared with state of the art approaches reaching the best result.
Año de publicación:
2021
Keywords:
- Spatial attention
- Instance normalization
- Adaptative
- Residual learning
Fuente:


Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Visión por computadora
- Ciencias de la computación
- Simulación por computadora
Áreas temáticas:
- Métodos informáticos especiales