Nonlinear programming strategies for state estimation and model pbkp_redictive control


Abstract:

Sensitivity-based strategies for on-line moving horizon estimation (MHE) and nonlinear model pbkp_redictive control (NMPC) are presented both from a stability and computational perspective. These strategies make use of full-space interior-point nonlinear programming (NLP) algorithms and NLP sensitivity concepts. In particular, NLP sensitivity allows us to partition the solution of the optimization problems into background and negligible on-line computations, thus avoiding the problem of computational delay even with large dynamic models. We demonstrate these developments through a distributed polymerization reactor model containing around 10,000 differential and algebraic equations (DAEs). © 2009 Springer Berlin Heidelberg.

Año de publicación:

2009

Keywords:

  • Interior-point methods
  • Large-scale
  • Sparse linear algebra
  • sensitivity
  • NMPC
  • nonlinear programming
  • MHE

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Control óptimo

Áreas temáticas:

  • Programación informática, programas, datos, seguridad
  • Costura, confección y vida personal
  • Física aplicada