Nonlinear programming strategies for state estimation and model predictive control
Abstract:
Sensitivity-based strategies for on-line moving horizon estimation (MHE) and nonlinear model predictive control (NMPC) are presented both from a stability and computational perspective. These strategies make use of full-space interior-point nonlinear programming (NLP) algorithms and NLP sensitivity concepts. In particular, NLP sensitivity allows us to partition the solution of the optimization problems into background and negligible on-line computations, thus avoiding the problem of computational delay even with large dynamic models. We demonstrate these developments through a distributed polymerization reactor model containing around 10,000 differential and algebraic equations (DAEs). © 2009 Springer Berlin Heidelberg.
Año de publicación:
2009
Keywords:
- Interior-point methods
- Large-scale
- Sparse linear algebra
- sensitivity
- NMPC
- nonlinear programming
- MHE
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Control óptimo
Áreas temáticas de Dewey:
- Programación informática, programas, datos, seguridad
- Costura, confección y vida personal
- Física aplicada

Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 12: Producción y consumo responsables
- ODS 17: Alianzas para lograr los objetivos
