Nonlinear system identification with composite relevance vector machines


Abstract:

Nonlinear system identification based on relevance vector machines (RVMs) has been traditionally addressed by stacking the input and/or output regressors and then performing standard RVM regression. This letter introduces a full family of composite kernels in order to integrate the input and output information in the mapping function efficiently and hence generalize the standard approach. An improved trade-off between accuracy and sparsity is obtained in several benchmark problems. Also, the RVM yields confidence intervals for the pbkp_redictions, and it is less sensitive to free parameter selection. © 2007 IEEE.

Año de publicación:

2007

Keywords:

  • Relevance vector machine (RVM)
  • Nonlinear system identification
  • Composite kernels

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Optimización matemática

Áreas temáticas:

  • Métodos informáticos especiales