Nonlinear system identification with composite relevance vector machines
Abstract:
Nonlinear system identification based on relevance vector machines (RVMs) has been traditionally addressed by stacking the input and/or output regressors and then performing standard RVM regression. This letter introduces a full family of composite kernels in order to integrate the input and output information in the mapping function efficiently and hence generalize the standard approach. An improved trade-off between accuracy and sparsity is obtained in several benchmark problems. Also, the RVM yields confidence intervals for the pbkp_redictions, and it is less sensitive to free parameter selection. © 2007 IEEE.
Año de publicación:
2007
Keywords:
- Relevance vector machine (RVM)
- Nonlinear system identification
- Composite kernels
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Optimización matemática
Áreas temáticas:
- Métodos informáticos especiales