Nonparametric Geostatistical Prediction of Daily PM<inf>2.5</inf> Concentrations Based on Satellite Measurements of Aerosol Optical Depth


Abstract:

The prediction of particulate matter (PM2.5 ) has been a widely studied topic, and most of the techniques proposed are based on correlating the concentrations of this variable, obtained by sensors on the ground, with satellite measurements of Aerosol optical depth (AOD). In the present work, a non-parametric geostatistical method based on the local linear estimator is proposed in order to obtain flexible predictions in positions not observed by the monitoring network. This procedure was applied to real daily data, and the results obtained by this approximation were compared with those values derived from models based on linear regression and parametric kriging for a validation sample.

Año de publicación:

2022

Keywords:

  • PM 2.5
  • Aerosol optical depth
  • Local linear estimation
  • KRIGING

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ciencia atmosférica

Áreas temáticas de Dewey:

  • Geología, hidrología, meteorología
  • Ingeniería sanitaria
  • Otros problemas y servicios sociales
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 3: Salud y bienestar
  • ODS 11: Ciudades y comunidades sostenibles
  • ODS 9: Industria, innovación e infraestructura
Procesado con IAProcesado con IA