Nonparametric geostatistical risk mapping
Abstract:
In this work, a fully nonparametric geostatistical approach to estimate threshold exceeding probabilities is proposed. To estimate the large-scale variability (spatial trend) of the process, the nonparametric local linear regression estimator, with the bandwidth selected by a method that takes the spatial dependence into account, is used. A bias-corrected nonparametric estimator of the variogram, obtained from the nonparametric residuals, is proposed to estimate the small-scale variability. Finally, a bootstrap algorithm is designed to estimate the unconditional probabilities of exceeding a threshold value at any location. The behavior of this approach is evaluated through simulation and with an application to a real data set.
Año de publicación:
2018
Keywords:
- Nonparametric estimation
- Bias-corrected variogram estimation
- Bootstrap
- Local linear regression
- KRIGING
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Estadísticas
- Estadísticas
Áreas temáticas:
- Probabilidades y matemática aplicada