Nonparametric geostatistical risk mapping


Abstract:

In this work, a fully nonparametric geostatistical approach to estimate threshold exceeding probabilities is proposed. To estimate the large-scale variability (spatial trend) of the process, the nonparametric local linear regression estimator, with the bandwidth selected by a method that takes the spatial dependence into account, is used. A bias-corrected nonparametric estimator of the variogram, obtained from the nonparametric residuals, is proposed to estimate the small-scale variability. Finally, a bootstrap algorithm is designed to estimate the unconditional probabilities of exceeding a threshold value at any location. The behavior of this approach is evaluated through simulation and with an application to a real data set.

Año de publicación:

2018

Keywords:

  • Nonparametric estimation
  • Bias-corrected variogram estimation
  • Bootstrap
  • Local linear regression
  • KRIGING

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Estadísticas
  • Estadísticas

Áreas temáticas de Dewey:

  • Probabilidades y matemática aplicada
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 11: Ciudades y comunidades sostenibles
  • ODS 15: Vida de ecosistemas terrestres
Procesado con IAProcesado con IA