Nonsmooth optimization by successive abs-linearization in function spaces


Abstract:

We present and analyze the solution of nonsmooth optimization problems by a quadratic overestimation method in a function space setting. Under certain assumptions on a suitable local model, we show convergence to first-order minimal points. Subsequently, we discuss an approach to generate such a local model using the so-called abs-linearization. Finally, we discuss a class of PDE-constrained optimization problems incorporating the (Formula presented.) -penalty term that fits into the considered class of nonsmooth optimization problems.

Año de publicación:

2022

Keywords:

  • quadratic overestimation method
  • Abs-linearization
  • first-order minimality
  • Jen-Chih Yao

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Análisis
  • Principios generales de matemáticas
  • Análisis numérico