Nonsmooth optimization by successive abs-linearization in function spaces
Abstract:
We present and analyze the solution of nonsmooth optimization problems by a quadratic overestimation method in a function space setting. Under certain assumptions on a suitable local model, we show convergence to first-order minimal points. Subsequently, we discuss an approach to generate such a local model using the so-called abs-linearization. Finally, we discuss a class of PDE-constrained optimization problems incorporating the (Formula presented.) -penalty term that fits into the considered class of nonsmooth optimization problems.
Año de publicación:
2022
Keywords:
- quadratic overestimation method
- Abs-linearization
- first-order minimality
- Jen-Chih Yao
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Análisis
- Principios generales de matemáticas
- Análisis numérico