Note on in-antimagicness and out-antimagicness of digraphs
Abstract:
A digraph D is called (a, d)-vertex-in-antimagic ((a, d)-vertex-out-antimagic) if it is possible to label its vertices and arcs with distinct numbers from the set {1, 2, …,|V(D)|+|A(D)|} such that the set of all in-vertex-weights (out-vertex-weights) form an arithmetic sequence with initial term a and a common difference d, where a > 0, d ≥ 0 are integers. The in-vertex-weight (out-vertex-weight) of a vertex n ϵ V(D) is defined as the sum of the vertex label and the labels of arcs ingoing (outgoing) to n. Moreover, if the smallest numbers are used to label the vertices of D such a graph is called super. In this paper we will deal with in-antimagicness and out-antimagicness of in-regular and out-regular digraphs.
Año de publicación:
2022
Keywords:
- In-regular digraph
- 05C78
- 05C20
- (a, d)-vertex-in-antimagic graph
- Out-regular digraph
- (a, d)-vertex-out-antimagic graph
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Teoría de grafos
Áreas temáticas:
- Ciencias de la computación
- Funcionamiento de bibliotecas y archivos
- Principios generales de matemáticas