Numerical low-rank approximation of matrix differential equations


Abstract:

The efficient numerical integration of large-scale matrix differential equations is a topical problem in numerical analysis and of great importance in many applications. Standard numerical methods applied to such problems require an unduly amount of computing time and memory, in general. Based on a dynamical low-rank approximation of the solution, a new splitting integrator is proposed for a quite general class of stiff matrix differential equations. This class comprises differential Lyapunov and differential Riccati equations that arise from spatial discretizations of partial differential equations. The proposed integrator handles stiffness in an efficient way, and it preserves the symmetry and positive semidefiniteness of solutions of differential Lyapunov equations. Numerical examples that illustrate the benefits of this new method are given. In particular, numerical results for the efficient simulation of the weather phenomenon El Niño are presented.

Año de publicación:

2018

Keywords:

  • Dynamical low-rank approximation
  • Splitting integrators
  • Differential Riccati equations
  • El Niño simulation
  • Differential Lyapunov equations
  • Linear quadratic regulator problem

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Análisis numérico
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Análisis
  • Análisis numérico
  • Ciencias de la computación