ON H(div)-Conforming methods for double-diffusion equations in porous media
Abstract:
A stationary Navier-Stokes-Brinkman problem coupled to a system of advection-diffusion equations serves as a model for so-called double-diffusive viscous flow in porous media in which both heat and a solute within the fluid phase are subject to transport and diffusion. The solvability analysis of these governing equations results as a combination of compactness arguments and fixed-point theory. In addition an H(div)-conforming discretization is formulated by a modification of existing methods for Brinkman flows. The well-posedness of the discrete Galerkin formulation is also discussed, and convergence properties are derived rigorously. Computational tests confirm the predicted rates of error decay and illustrate the applicability of the methods for the simulation of bacterial bioconvection and thermohaline circulation problems.
Año de publicación:
2019
Keywords:
- Cross diffusion
- Fixed-point theory
- Doubly diffusive problems
- Viscous flow in porous media
- Mixed finite element methods
- A priori error estimation
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Análisis numérico
- Matemáticas aplicadas
Áreas temáticas de Dewey:
- Análisis

Objetivos de Desarrollo Sostenible:
- ODS 6: Agua limpia y saneamiento
- ODS 17: Alianzas para lograr los objetivos
- ODS 9: Industria, innovación e infraestructura
