ON H(div)-Conforming methods for double-diffusion equations in porous media


Abstract:

A stationary Navier-Stokes-Brinkman problem coupled to a system of advection-diffusion equations serves as a model for so-called double-diffusive viscous flow in porous media in which both heat and a solute within the fluid phase are subject to transport and diffusion. The solvability analysis of these governing equations results as a combination of compactness arguments and fixed-point theory. In addition an H(div)-conforming discretization is formulated by a modification of existing methods for Brinkman flows. The well-posedness of the discrete Galerkin formulation is also discussed, and convergence properties are derived rigorously. Computational tests confirm the predicted rates of error decay and illustrate the applicability of the methods for the simulation of bacterial bioconvection and thermohaline circulation problems.

Año de publicación:

2019

Keywords:

  • Cross diffusion
  • Fixed-point theory
  • Doubly diffusive problems
  • Viscous flow in porous media
  • Mixed finite element methods
  • A priori error estimation

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Análisis numérico
  • Matemáticas aplicadas

Áreas temáticas de Dewey:

  • Análisis
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 6: Agua limpia y saneamiento
  • ODS 17: Alianzas para lograr los objetivos
  • ODS 9: Industria, innovación e infraestructura
Procesado con IAProcesado con IA