On (a, d)-antimagic prisms
Abstract:
We deal with (a, d)-antimagic labelings of the prisms. A connected graph G = (V, E) is said to be (a, d)-antimagic if there exist positive integers a, d and a bijection f: E → {1, 2, . . . , |E|} such that the induced mapping gf: V → N, defined by gf(v) = Σ {f(u, v): (u, v) ∈ E(G)}, is injective and gf(V) = {a, a + d, . . . , a + (|V| - 1)d}. We characterize (a, d)-antimagic prisms with even cycles and we conjecture that prisms with odd cycles of length n, n ≥ 7, are (n+7/2, 4)-antimagic.
Año de publicación:
1998
Keywords:
Fuente:
scopusTipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
Áreas temáticas de Dewey:
- Aritmética
- Cultivos de huerta (horticultura)
- Principios generales de matemáticas
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 17: Alianzas para lograr los objetivos
- ODS 8: Trabajo decente y crecimiento económico