On Functions of Bounded (φ, k)-Variation


Abstract:

Given a φ-function φ and k ϵ N we introduce and study the concept of (φ, k)-variation in the sense of Riesz of a real function on a compact interval. We show that a function u :[a, b] → R has a bounded (φ, k)-variation if and only if u(k-1) is absolutely continuous on [a, b]and u(k) belongs to the Orlicz class L φ[a, b]. We also show that the space generated by this class of functions is a Banach space. Our approach simultaneously generalizes the concepts of the Riesz φ-variation, the de la Valleé Poussin second-variation and the Popoviciu kth variation.

Año de publicación:

2019

Keywords:

  • Popoviciu kth variation
  • bounded (φ, k)-variation
  • De la Valleé Poussin second-variation
  • Riesz φ-variation

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Optimización matemática

Áreas temáticas:

  • Principios generales de matemáticas
  • Análisis