On connection between α-labelings and edge-antimagic labelings of disconnected graphs
Abstract:
A labeling of a graph is any map that carries some set of graph elements to numbers (usually to the positive integers). An (a,d)edge antanagic total labeling on a graph with p vertices and q edges is defined as a one-to-one map taking the vertices and edges onto the integers 1,2,...,p + q with the property that the sums of the labels on the edges and the labels of their endpoints form an arithmetic sequence starting from a and having a common difference d. Such a labeling is called super if the smallest possible labels appear on the vertices. We use the connection between α-labelings and edge-antimagic labelings for determining a super (a,d)-edge-antimagic total labelings of disconnected graphs. Copyright © 2012, Charles Babbage Research Centre All rights reserved.
Año de publicación:
2012
Keywords:
- (a.d)-edge-nnlimagic total labeling
- Super (a,d)-edgeantimngic total labeling
- (a, d)-edge-antimagic vertex labeling
- αLabeling
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Teoría de grafos
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Ciencias de la computación
- Principios generales y formas musicales
- Álgebra