On fractional metric dimension of comb product graphs


Abstract:

A vertex z in a connected graph G resolves two vertices u and v in G if dG(u, z) = dG(v, z). A set of vertices RG(u, v} is a set of all resolving vertices of u and v in G. For every two distinct vertices u and v in G, a resolving function f of G is a real function f: V (G) → [0; 1] such that f(RG(u, v)) ≥ 1. The minimum value of f(V (G)) from all resolving functions f of G is called the fractional metric dimension of G. In this paper, we consider a graph which is obtained by the comb product between two connected graphs G and H, denoted by Go H. For any connected graphs G, we determine the fractional metric dimension of Go H where H is a connected graph having a stem or a major vertex.

Año de publicación:

2018

Keywords:

  • Comb Product
  • Resolving Function
  • Fractional Metric Dimension

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Teoría de grafos
  • Optimización matemática

Áreas temáticas:

  • Análisis
  • Principios generales de matemáticas
  • Ciencias de la computación