On frequency-domain maximum likelihood identification of state-space time-varying systems


Abstract:

This paper addresses the problem of identifying state-space models for time-varying systems using maximum likelihood estimation in the frequency domain. We use the sliding discrete Fourier transform (S-DFT) to incorporate new data available on-line. Two possible approaches are explored. First, a Taylor series expansion is used to approximate the likelihood function in order to obtain a recursive maximisation algorithm. In the second approach, the Expectation-Maximisation algorithm used to maximise the likelihood function is modified to incorporate S-DFT data in each iteration. Examples are presented confirming the feasibility and performance of the two proposed algorithms.

Año de publicación:

2010

Keywords:

  • Frequency domain
  • identification
  • Time-varying systems
  • Maximum likelihood

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Teoría de control

Áreas temáticas:

  • Física aplicada
  • Métodos informáticos especiales