On frequency-domain maximum likelihood identification of state-space time-varying systems
Abstract:
This paper addresses the problem of identifying state-space models for time-varying systems using maximum likelihood estimation in the frequency domain. We use the sliding discrete Fourier transform (S-DFT) to incorporate new data available on-line. Two possible approaches are explored. First, a Taylor series expansion is used to approximate the likelihood function in order to obtain a recursive maximisation algorithm. In the second approach, the Expectation-Maximisation algorithm used to maximise the likelihood function is modified to incorporate S-DFT data in each iteration. Examples are presented confirming the feasibility and performance of the two proposed algorithms.
Año de publicación:
2010
Keywords:
- Frequency domain
- identification
- Time-varying systems
- Maximum likelihood
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Teoría de control
Áreas temáticas:
- Física aplicada
- Métodos informáticos especiales