On generalized property (v) for bounded linear operators


Abstract:

An operator T acting on a Banach space X has property (gw) if σa(T) \ σSBF-+ (T) = E(T), where σa(T) is the approximate point spectrum of T, σSBF-+ (T) is the upper semi-B-Weyl spectrum of T and E(T) is the set of all isolated eigenvalues of T. We introduce and study two new spectral properties (v) and (gv) in connection with Weyl type theorems. Among other results, we show that T satisfies (gv) if and only if T satisfies (gw) and σ (T) = σa(T). © Instytut Matematyczny PAN, 2012.

Año de publicación:

2012

Keywords:

  • Generalized weyl's theorem
  • Semi-BFredholm operator.
  • Property (v)
  • Property (gv)

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Optimización matemática

Áreas temáticas:

  • Matemáticas
  • Álgebra
  • Aritmética