On h-antimagicness of disconnected graphs


Abstract:

A simple graph G = (V; E) admits an H-covering if every edge in E belongs to at least one subgraph of G isomorphic to a given graph H. Then the graph G is (a; d)-H-antimagic if there exists a bijection f : ∪ E → {1, 2, V + E} such that, for all subgraphs H0 of G isomorphic to H, the H-weights, wtf (H) =∑vv(H') f(v)+∑e∈(H') f(e) form an arithmetic progression with the initial term a and the common difference d. When f (V) = {1; 2 V}, then G is said to be super (a; d)-H-antimagic. In this paper, we study super (a, d)-H-antimagic labellings of a disjoint union of graphs for d = E(H) -V(H).

Año de publicación:

2016

Keywords:

  • union of graphs
  • and phrases H-covering
  • (super) (a, d)-H-antimagic labelling

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Teoría de grafos

Áreas temáticas:

  • Ciencias de la computación