On h-antimagicness of disconnected graphs
Abstract:
A simple graph G = (V; E) admits an H-covering if every edge in E belongs to at least one subgraph of G isomorphic to a given graph H. Then the graph G is (a; d)-H-antimagic if there exists a bijection f : ∪ E → {1, 2, V + E} such that, for all subgraphs H0 of G isomorphic to H, the H-weights, wtf (H) =∑vv(H') f(v)+∑e∈(H') f(e) form an arithmetic progression with the initial term a and the common difference d. When f (V) = {1; 2 V}, then G is said to be super (a; d)-H-antimagic. In this paper, we study super (a, d)-H-antimagic labellings of a disjoint union of graphs for d = E(H) -V(H).
Año de publicación:
2016
Keywords:
- union of graphs
- and phrases H-covering
- (super) (a, d)-H-antimagic labelling
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Teoría de grafos
Áreas temáticas:
- Ciencias de la computación