On inference of network time constants from impulse response data: Graph-theoretic Cramer-Rao bounds
Abstract:
We examine the role played by a linear dynamical network's topology in inference of its eigenvalues from noisy impulse-response data. Specifically, for a canonical linear timeinvariant network dynamics, we relate the Cramer-Rao bounds on eigenvalue estimator performance (from impulse-response data) to structural properties of the transfer function, and in turn to the network's topological structure. We focus especially on networks with a slow-coherence structure, in which case we find that stimulus and observation in each strongly-connected network component is needed for high-fidelity estimation. ©2009 IEEE.
Año de publicación:
2009
Keywords:
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Teoría de grafos
Áreas temáticas:
- Ciencias de la computación