On linear-quadratic elliptic control problems of semi-infinite type
Abstract:
We derive a priori error estimates for linear-quadratic elliptic optimal control problems with pointwise state constraints in a compact subdomain of the spatial domain Ω for a class of problems with finite-dimensional control space. The problem formulation leads to a class of semi-infinite programming problems, whose constraints are implicitly given by the FE-discretization of the underlying PDEs. We prove an order of h√{pipe}log h{pipe} for the error {pipe}ū - ūh{pipe} in the controls, and show that it can be improved to an order of h2{pipe}log h{pipe} under certain assumptions on the structure of the active set. Numerical experiments underline the proven theoretical results. © 2011 Taylor & Francis.
Año de publicación:
2011
Keywords:
- error estimates
- Elliptic optimal control problem
- State constraints
- Finite element discretization
- Semi-infinite optimization
Fuente:
google
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Control óptimo
- Optimización matemática
Áreas temáticas:
- Análisis