On neutrosophic uninorms
Abstract:
Uninorm generalizes the notion of t-norm and t-conorm in fuzzy logic theory. They are three increasing, commutative and associate operators having one neutral element. However, such specific value identifies the kind of operator it is; t-norms have the 1 as neutral element, t-conorms have the 0 and uninorms have every number lying between 0 and 1. Uninorms have been applied as aggregators in many fields of Artificial Intelligence and Decision Making. This theory has also been extended to the framework of interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and L-fuzzy sets. This paper aims to explore neutrosophic uninorms. We demonstrate that it is possible to define uninorms operators from neutrosophic logic. Additionally, we define neutrosophic implicators induced by neutrosophic uninorms. The combination of both, Neutrosophy and uninorms, enriches the applicability of uninorms operators due to the possibility of incorporating indeterminancy as part of the Neutrosophy contribution.
Año de publicación:
2021
Keywords:
- neutrosophic implicator
- Neutrosophic logic
- Uninorm
- neutrosophic uninorm
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
Áreas temáticas:
- Principios generales de matemáticas
- Ciencias de la computación
- Matemáticas