On non conformable fractional Laplace transform
Abstract:
In the present paper, the main theorems of the classical Laplace transform are generalized in the non-conforming Laplace transform with nucleus et− α. We calculate the Laplace transform of non-conforming agreement of this kernel from some elementary functions and establish the non-conforming version of the transform of the successive derivative, the integral of a function and the convolution of fractional functions. In addition, the bounded and the existence of the non-conforming Laplace transform is presented. Finally, we show the application of N1− Transform to solving fractional differential equations.
Año de publicación:
2021
Keywords:
Fuente:
google
Tipo de documento:
Other
Estado:
Acceso abierto
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Análisis