On non conformable fractional Laplace transform


Abstract:

In the present paper, the main theorems of the classical Laplace transform are generalized in the non-conforming Laplace transform with nucleus et− α. We calculate the Laplace transform of non-conforming agreement of this kernel from some elementary functions and establish the non-conforming version of the transform of the successive derivative, the integral of a function and the convolution of fractional functions. In addition, the bounded and the existence of the non-conforming Laplace transform is presented. Finally, we show the application of N1− Transform to solving fractional differential equations.

Año de publicación:

2021

Keywords:

    Fuente:

    googlegoogle

    Tipo de documento:

    Other

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Optimización matemática
    • Optimización matemática

    Áreas temáticas:

    • Análisis