On pareto local optimal solutions networks
Abstract:
Pareto local optimal solutions (PLOS) are believed to highly influence the dynamics and the performance of multi-objective optimization algorithms, especially those based on local search and Pareto dominance. A number of studies so far have investigated their impact on the difficulty of searching the landscape underlying a problem instance. However, the community still lacks knowledge on the structure of PLOS and the way it impacts the effectiveness of multi-objective algorithms. Inspired by the work on local optima networks in single-objective optimization, we introduce a PLOS network (PLOS-net) model as a step toward the fundamental understanding of multi-objective landscapes and search algorithms. Using a comprehensive set of $${\rho }mnk$$ -landscapes, PLOS-nets are constructed by full enumeration, and selected network features are further extracted and analyzed with respect to instance characteristics. A correlation and regression analysis is then conducted to capture the importance of the PLOS-net features on the runtime and effectiveness of two prototypical Pareto-based heuristics. In particular, we are able to provide empirical evidence for the relevance of the PLOS-net model to explain algorithm performance. For instance, the degree of connectedness in the PLOS-net is shown to play an even more important role than the number of PLOS in the landscape.
Año de publicación:
2018
Keywords:
Fuente:
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Ciencias de la computación
- Ciencias sociales
- Dirección general