On permanent and breaking waves in hyperelastic rods and rings
Abstract:
We prove that the only global strong solution of the periodic rod equation vanishing in at least one point (t0,x0)∈R+×S1 is the identically zero solution. Such conclusion holds provided the physical parameter γ of the model (related to the Finger deformation tensor) is outside some neighborhood of the origin and applies in particular for the Camassa-Holm equation, corresponding to γ. = 1. We also establish the analogue of this unique continuation result in the case of non-periodic solutions defined on the whole real line with vanishing boundary conditions at infinity. Our analysis relies on the application of new local-in-space blowup criteria and involves the computation of several best constants in convolution estimates and weighted Poincaré inequalities. © 2014 Elsevier Inc.
Año de publicación:
2014
Keywords:
- minimization
- Wave-breaking
- Rod equation
- Weighted poincaré inequality
- Shallow water
- Camassa-Holm
- Blowup
- Compressible rod
Fuente:
![scopus](/_next/image?url=%2Fscopus.png&w=128&q=75)
Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Ingeniería mecánica
- Ingeniería mecánica
Áreas temáticas:
- Geometría
- Física moderna
- Ingeniería y operaciones afines