On some time marching schemes for the stabilized finite element approximation of the mixed wave equation


Abstract:

In this paper we analyze time marching schemes for the wave equation in mixed form. The problem is discretized in space using stabilized finite elements. On the one hand, stability and convergence analyses of the fully discrete numerical schemes are presented using different time integration schemes and appropriate functional settings. On the other hand, we use Fourier techniques (also known as von Neumann analysis) in order to analyze stability, dispersion and dissipation. Numerical convergence tests are presented for various time integration schemes, polynomial interpolations (for the spatial discretization), stabilization methods, and variational forms. To analyze the behavior of the different schemes considered, a 1D wave propagation problem is solved.

Año de publicación:

2015

Keywords:

  • Fourier analysis
  • Von Neumann analysis
  • Time marching schemes
  • Dissipation
  • Mixed wave equation
  • Dispersión

Fuente:

scopusscopus
rraaerraae

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Método de elementos finitos

Áreas temáticas:

  • Análisis