On the Dirichlet problem for second order elliptic systems in the ball


Abstract:

In this paper we study the Dirichlet problem in the ball for the so-called inframonogenic functions, i.e. the solutions of the sandwich equation ∂x_f∂x_=0, where ∂x_ stands for the Dirac operator in Rm. The main steps in deriving our results are the establishment of some interior estimates for the first order derivatives of harmonic Hölder continuous functions and the proof of certain invariance property of the higher order Lipschitz class under the action of the Poisson integral. Using Mathematica we also implement an algorithm to find explicitly the solution of such a Dirichlet problem for a much wider class of partial differential equations in the ball of R3 with polynomial boundary data.

Año de publicación:

2023

Keywords:

  • inframonogenic functions
  • Dirichlet problem
  • Clifford analysis

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ecuación diferencial parcial
  • Matemáticas aplicadas
  • Optimización matemática

Áreas temáticas:

  • Análisis