On the Use of Variability Measures to Analyze Source Coding Data Based on the Shannon Entropy
Abstract:
Source coding maps elements from an information source to a sequence of alphabetic symbols. Then, the source symbols can be recovered exactly from the binary units. In this paper, we derive an approach that includes information variation in the source coding. The approach is more realistic than its standard version. We employ the Shannon entropy for coding the sequences of a source. Our approach is also helpful for short sequences when the central limit theorem does not apply. We rely on a quantifier of the information variation as a source. This quantifier corresponds to the second central moment of a random variable that measures the information content of a source symbol; that is, considering the standard deviation. An interpretation of typical sequences is also provided through this approach. We show how to use a binary memoryless source as an example. In addition, Monte Carlo simulation studies are conducted to evaluate the performance of our approach. We apply this approach to two real datasets related to purity and wheat prices in Brazil.
Año de publicación:
2023
Keywords:
- entropy
- communication science
- information theory
- discrete memoryless source
- statistical moments
- Newton–Raphson method
- Monte carlo simulation
- variance
Fuente:


Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Visualización de información
- Algoritmo
Áreas temáticas:
- Métodos informáticos especiales
- Funcionamiento de bibliotecas y archivos
- Programación informática, programas, datos, seguridad