On the accuracy of parameter estimation for continuous time nonlinear systems from sampled data


Abstract:

This paper deals with the issue of estimating the parameters in a continuous-time nonlinear dynamical model from sampled data. We focus on the issue of bias-variance trade-offs. In particular, we show that the bias error can be significantly reduced by using a particular form of sampled data model based on truncated Taylor series. This model retains the conceptual simplicity of models based on Euler integration but has much improved accuracy as a function of the sampled period. © 2011 IEEE.

Año de publicación:

2011

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Sistema no lineal
    • Sistema no lineal

    Áreas temáticas:

    • Matemáticas
    • Ingeniería y operaciones afines
    • Ciencias de la computación