On the accuracy of parameter estimation for continuous time nonlinear systems from sampled data
Abstract:
This paper deals with the issue of estimating the parameters in a continuous-time nonlinear dynamical model from sampled data. We focus on the issue of bias-variance trade-offs. In particular, we show that the bias error can be significantly reduced by using a particular form of sampled data model based on truncated Taylor series. This model retains the conceptual simplicity of models based on Euler integration but has much improved accuracy as a function of the sampled period. © 2011 IEEE.
Año de publicación:
2011
Keywords:
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Sistema no lineal
- Sistema no lineal
Áreas temáticas:
- Matemáticas
- Ingeniería y operaciones afines
- Ciencias de la computación