On the hereditary character of certain spectral properties and some applications


Abstract:

In this paper we study the behavior of certain spectral properties of an operator T on a proper closed and T-invariant subspace W (Formula presented) X such that Tn(X) (Formula presented) W, for some n > 1, where T (Formula presented) L(X) and X is an infinite-dimensional complex Banach space. We prove that for these subspaces a large number of spectral properties are transmitted from T to its restriction on W and vice-versa. As consequence of our results, we give conditions for which semi-Fredholm spectral properties, as well as Weyl type theorems, are equivalent for two given operators. Additionally, we give conditions under which an operator acting on a subspace can be extended on the entire space preserving the Weyl type theorems. In particular, we give some applications of these results for integral operators acting on certain functions spaces.

Año de publicación:

2021

Keywords:

  • Integral operators
  • Restrictions of operators
  • Weyl type theorems
  • semi-Fredholm theory
  • spectral properties

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Espectroscopia

Áreas temáticas de Dewey:

  • Física
  • Álgebra
  • Matemáticas
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 8: Trabajo decente y crecimiento económico
  • ODS 4: Educación de calidad
  • ODS 9: Industria, innovación e infraestructura
Procesado con IAProcesado con IA