On the integration of molecular dynamics, data science, and experiments for studying solvent effects on catalysis


Abstract:

Computational workflows that combine molecular dynamics (MD) simulations and emerging data-centric (DC) methods can accelerate the screening and analysis of solvent systems experimentally and computationally. MD simulations provide atomic positions and velocities of reactant, solvent, and catalyst materials that can be manipulated into data representations that in turn can be used by DC techniques to conduct predictive modeling, feature extraction, and experimental design. For liquid-phase catalytic applications, emerging DC techniques such as Convolutional and Graph Neural Networks (CNN/GNN), Topological Data Analysis (TDA), and Active Learning (AL) can leverage MD and experimental data to quickly predict solvent effects on reaction outcomes. For instance, in recent studies, 3D solvent environments obtained with MD have been exploited by CNNs to predict experimental reaction rates for homogeneous acid-catalyzed lignocellulosic processes. In this perspective, we discuss basic principles of DC methods and how these can be combined with MD to enable high-throughput screening of solvent selection for diverse catalysis applications.

Año de publicación:

2022

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Review

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Catálisis

    Áreas temáticas de Dewey:

    • Miscelánea
    • Química física
    • Ingeniería química
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 12: Producción y consumo responsables
    • ODS 17: Alianzas para lograr los objetivos
    Procesado con IAProcesado con IA